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Abstract

With the increase in popularity of Al-coding assistant tools,
developers are increasingly checking-in Al generated code
into production systems. Yet, current testing frameworks can-
not keep up with this pace. Traditional fuzz testing techniques
allocate resources uniformly and lack semantic awareness
of potential vulnerable targets. Hence, they waste resources
testing safe code and miss to catch actual vulnerabilities ef-
ficiently. Further, they ignore prompt constraints in harness
generation exploding the search space. To address these is-
sues, we present a hybrid testing framework that employs
LLM-guided adaptive fuzzing to efficiently detect vulnera-
bilities. It combines prompt-based behavioral diversification,
LLM-guided fuzz harness generation with problem-specific
oracles, and a LLM-based vulnerability predictor to enable
adaptive resource allocation and dynamic early stopping. We
evaluate our system on a set of CSES algorithmic problems.
Our approach improves vulnerability discrimination precision
from 77.9% to 85.7% compared to GreenFuzz. It filters out
nearly 2x more non-vulnerable code, while achieving com-
parable bug detection recall at 1.7x lower time cost. These
results show a scalable path towards resource-efficient fuzz
testing to catch vulnerabilities in Al-generated code.

1 Introduction

Large Language Models (LLMs) have become ubiquitous
across diverse domains, from question answering and retrieval
systems to performing scientific discoveries. One of the most
popular applications has been in software development, where
LLM-powered coding agents such as Claude Code [3] and
GitHub Copilot [13] are changing how developers write code.
These tools allow developers to express intent in natural lan-
guage and thus enable rapid experiments with product fea-
tures. As they become popular, the amount of Al-generated
code is increasing in production systems across several safety-
critical domains.

However, current testing approaches have not evolved to
match the pace and scale of the code output by these agents.

Traditional testing approaches like unit test generation, formal
verification, fuzz testing were built to verify human-written
code. However, Al-generated code can show unexpected be-
haviors, such as algorithmic complexity mismatches, resource
exhaustion vulnerabilities, and prompt-induced behavioral
variations. As a result, shipping untested Al-generated code in
safety-critical systems such as algorithmic trading platforms,
flight control software, and medical devices raises risks where
seemingly correct programs may fail under adversarial input.

Existing testing approaches have several limitations. LLM-
based unit test generation [8] achieves high code coverage
but cannot stress-test algorithmic complexity or detect time-
out and overflow behaviors. Fuzz Testing [5,21], a popular
technique to identify crashes and security vulnerabilities, is
exhaustive in its approach but computationally expensive.
Traditionally, it allocates uniform fuzz time budgets to all
programs regardless of risk, wasting resources testing safe
code while ignoring potentially vulnerable targets. Formal
verification [18] provides strong correctness guarantees. How-
ever, it requires domain experts for invariant generation as
LLMs struggles with increasing code complexity and do not
scale. This creates a gap in scale testing Al generated code
for algorithmic vulnerabilities.

We address this gap with a hybrid LLM-guided fuzzing
framework that combines semantic reasoning with adaptive
resource allocation. Our insight is that LLMs can act as se-
mantic analyzers capable of predicting vulnerability risk by
reasoning about algorithmic properties that static analysis
cannot capture. Our system integrates three components: (1)
prompt variant generation to explore user behavioral diver-
sity, (2) LLM-guided fuzz harness generation that extracts
problem-specific constraints and generate effective oracles,
and (3) a hybrid vulnerability predictor that combines static
code metrics with LLM-extracted semantic features to enable
intelligent time allocation and early stopping.

Our evaluation of 96 CSES algorithmic tasks [17] shows
that our approach improves the precision of vulnerability
discrimination from 77.9% to 85.7% compared to Green-
Fuzz [19], and improves resource allocation by reducing over-



all fuzzing time up to 1.7x while maintaining strong recall.
Further, our fuzz-harness generation agent outputs effective
harnesses and scales linearly with problems. These results
show that LLM-guided semantic analysis enables a scalable
path toward efficient vulnerability detection.

2 Background and Motivation

This section examines the current landscape of testing ap-
proaches for Al-generated code and identifies key limita-
tions that motivate our work. We analyze three main cate-
gories: LLM-based unit test generation, formal verification
approaches, and existing fuzzing techniques.
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Figure 1: Limitations of ChatUniTest. Left: Validity rate of
the generated Unit tests across the problems. Right: Bug
Detection rate across the different bug buckets.

2.1 LLM-Based Unit Test Generation

Unit tests are widely used to evaluate the functional correct-
ness of code in software engineering. Recently, LLM-based
unit test generation tools such as ChatUniTest [8] have be-
come popular. These tools can often generate both test pre-
fixes and test oracles and ensure high coverage of the unit
under test. Specifically, ChatUniTest introduces a generation-
validation-repair pipeline, which includes a feedback loop that
iteratively optimizes generated test cases, making sure they
are compilable and error-free during runtime. ChatUniTest
also implements adaptive focal context generation, which ex-
tracts only the most relevant code context to minimize the
number of LLM tokens. Overall, ChatUniTest achieves ex-
cellent line coverage, but it also often produces invalid tests
and fails for complex programs. In our evaluation in Figure 1,
we see an average 21% invalid tests generated per problem
(left figure). By invalid, we mean that the expected output
of a function (asserted in its unit test) does not match the
actual output for the given input. Moreover, these tests fail
to capture timeouts, memory overflows, or algorithmic com-
plexity mismatches (right figure), making it difficult to detect
resource-bounded vulnerabilities.

2.2 Formal Verification and SMT-based Analysis

Formal verification mathematically proves the program cor-
rectness by checking if it adheres to the provided formal
specification. Tools like Dafny [18] leverage SMT solvers to

automatically verify programs annotated with preconditions,
postconditions, and loop invariants. Overall, it is the strongest
way to prove the correctness and is complete.

However, formally verifying Al-generated code at scale is
challenging. It requires precise specifications provided by do-
main experts. Recent work explored using LLMs to generate
loop invariants [1,29], but LLMs struggle with good invariant
generation and repairing incorrect invariants. Verification also
requires manual effort and iterative refinement upon failure
and is computationally expensive, requiring minutes per pro-
gram. This makes it infeasible to scale for frequently verifying
Al-generated code.

2.3 LLM-Guided Fuzzing

Fuzzing [21] is a popular testing technique that checks pro-
grams with randomly generated inputs to discover security
vulnerabilities. Traditional fuzzing approaches target pro-
grams from their public entry points, but struggle with low
coverage on deeply nested code paths. Coverage-guided gray-
box fuzzers like AFL [11] address this by using code cover-
age feedback to guide input mutation, but still face challenges
reaching functions deep in the call graph.

Fuzzing relies on good harnesses for targeted testing. There
have been recent improvements using LLMs to automate
fuzz harness generation. OSS-Fuzz-Gen [20] uses LLMs in a
multi-agent system to automatically generate fuzz harnesses
for target functions. Their system comprises of harness gener-
ation, refinement, coverage analysis, and feedback loops to
iteratively improve harnesses. While this approach reduces
manual effort, the generated harnesses can report false posi-
tive crashes [2] and fail to account for the problem specific
constraints. This leads to exploding the input fuzzing search
space and the detection of general crashes. However, for our
use case involving algorithmic code, we want to focus on
detecting complexity violations and resource exhaustion.

Another problem with traditional fuzzing is resource alloca-
tion and determining the stopping criterion. GreenFuzz [19]
tries to address this by using machine learning to predict
vulnerable functions and stop fuzzing when the coverage of
the predicted vulnerable code saturates. They extract features
from static analysis tools and software metrics and use the
trained classifier to predict vulnerability probability and fil-
ter programs. In their evaluation, they are able to terminate
campaigns 6-12 hours earlier and miss fewer than 0.5 bugs
on average. Their vulnerability predictor achieved ROC-AUC
scores of 0.8 (0.827 in evaluation on our dataset). However,
GreenFuzz’s approach has several limitations for our domain.
It relies solely on static features and cannot capture algorith-
mic properties. From Figure 4 of our evaluation, we can see
that there is still a gap in the quality of vulnerability discrim-
ination of Green Fuzz. It is not able to filter out most of the
non-vulnerable targets at lower thresholds. As a result, re-
sources are still spent on testing safe code. Moreover, it uses
a fixed saturation window and does not adapt fuzzing time



based on vulnerability probability, allocating equal time to all
targets that pass the vulnerability threshold.

3 System Design

To address the limitations identified in the previous work
and efficiently detect vulnerabilities in Al-generated code,
our system employs a three-stage pipeline architecture that
utilizes intelligent resource allocation for fuzz testing. The
framework combines LLM-guided semantic analysis with
traditional fuzzing to achieve high precision and scalability.

3.1 System Overview

The system takes the natural language descriptions of a set of
programming problems as input and assesses the coding agent-
generated solutions for vulnerabilities. The pipeline consists
of three main stages: (1) Prompt Variant Generation creates
diverse formulations of each problem to simulate real-world
usage patterns, (2) LLM-Based Fuzz Harness Generation pro-
duces problem-specific test harnesses with semantic oracles,
(3) Vulnerability Prediction and Adaptive Allocation uses a
hybrid ML model to predict vulnerability risk and intelligently
distribute fuzzing resources.
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Figure 2: Overview of our proposed architecture

3.2 Prompt Variant Generation

Previous research has shown that semantically equivalent
prompts can trigger different code generation behaviors in
LLMs [7,23,26], which leads to solutions with different types
of vulnerabilities. To explore this finding and simulate diverse
real-world user interactions, we generated multiple prompt
variants for each problem.

Our variant generation strategy is detailed in Table 1. For
each variant, we preserve the core problem semantics while
prompting with various styles, which instructs coding agents
to produce different solutions. Each solution is evaluated
against the official CSES test suite to mark whether it is buggy.
The buggy rate in the table shows that prompting the same
problem in different ways leads to variation in vulnerabilities.

Table 1: Prompt variants generated for each problem. Each
problem generates 12 variants: 1 original, 5 semantic varia-
tions, and 6 buggy variations with intentionally injected vul-
nerability instructions.

Variant Name Description % Buggy

Original & Semantic Variations

Original Original problem format 29.17

Overflow Emphasis Highlights edge cases with 27.08
large numbers

Reordered Presentation ~ Reorders constraints and ex- 29.17
amples first

Examples Only Minimal format relying on 35.42
examples

Iterative Approach Explicitly requests iterative 29.17
loops

Edge Case Focus Emphasizes boundary value 28.12
testing

Buggy Variations (Intentional Vulnerabilities)

Integer Overflow Forces int instead of long 62.50
data types

Timeout/Inefficient Suggests inefficient algo- 93.75
rithms

Heavy Recursion Encourages deep recursion 94.79
patterns

Array Indexing Induces off-by-one errors 91.67

Greedy Implementation ~ Suggests wrong algorithmic 92.71
approach

Incorrect Logic Introduces subtle logical er- 86.46

rors

3.3 LLM-Based Fuzz Harness Generation

3.3.1 Harness Generator Agent Design

Our fuzz harness generator employs structured prompt engi-
neering to guide an LLM agent in generating Jazzer [9] fuzz
tests. The generator receives three inputs: the problem de-
scription, the solution code, and the extracted solve () target
function signature. The LLM performs semantic analysis to
understand problem constraints, algorithmic properties, and
potential failure scenarios.

Constraint Extraction: The LLM parses problem descrip-
tions to extract numerical bounds (e.g., 1 < n < 10°), type
requirements, and structural constraints. These constraints
guide input generation to remain within valid ranges and
avoid exploding the search space. For example, in a graph
problems with n nodes and m edges, the generator respects
these bounds during edge creation.

Weighted Input Generation: Rather than uniform random
sampling, we employ weighted distributions to bias toward
stress-inducing inputs. For recursion-heavy problems (DFS,
backtracking), we bias toward maximum recursion depth by
generating large grids. For memory-intensive problems (in-
volving dynamic programming), we bias toward maximum
input sizes. The generator creates inputs spanning boundary



values at constraint limits, edge cases like empty arrays or sin-
gle elements, patterns like all-identical elements, and overflow
triggers using maximum representable values.

3.3.2 Oracle Generation
Generic fuzz harnesses often generate inputs without consid-
ering problem constraints, leading to a large search space that
wastes resources on invalid inputs. We address this by gener-
ating problem-specific oracles according to constraints from
the problem description. These oracles focus fuzzing on valid
inputs and detect violations of expected program behavior.
The timeout oracle detects infinite loops and excessive
recursion by running the solution in a separate thread with
timeout monitoring. The crash oracle identifies errors such as
null pointer dereferencing and array index violations. The de-
terminism oracle catches code with uninitialized memory and
ensures that identical inputs lead to identical outputs. Finally,
the overflow oracle is responsible for looking for incorrect
type choices. For example, operations on large positive num-
bers that yield a negative value can indicate overflow issues.

3.3.3 Validation Loop

LLM-generated code can contain syntax errors, type mis-
matches, or incorrect API usage. Drawing inspiration from
OSS-Fuzz-Gen [20], we implement a two-stage validation
loop with compilation-driven feedback to improve harness
quality.

When fuzzing on the generated harness, the agent attempts
to compile with the dependencies of the fuzzing framework.
The compilation checker captures error messages and parses
them to identify common issues like missing dependencies,
incompatibility between harness and target function, inappro-
priate usage of fuzzer API, etc. In case of failures, it uses a
retry mechanism that includes the original problem, the pre-
viously generated harness code, and the compilation error
output. This feedback guides the LLM perform targeted fixes
rather than regenerating from scratch.

3.4 Vulnerability Prediction and Adaptive Allocation

Traditional fuzzing allocates uniform time budgets to all tar-
gets, wasting resources on safe code while missing complex
vulnerabilities in high-risk programs. Our approach addresses
this through ML-based risk prediction and proportional re-
source allocation. The system comprises of feature extraction
combining static metrics with LLM semantic analysis, vul-
nerability prediction, and adaptive time allocation with early

stopping.

3.4.1 Feature Extraction

Accurate vulnerability prediction requires features that cap-
ture both structural complexity and algorithmic behavior. We
extract 14 features organized into two categories.

Static Analysis Features: Building upon the metrics used in
GreenFuzz [19], we compute six static code complexity met-
rics using SciTools Understand [27] and custom analyzers,
including total lines of code (LOC), total cyclomatic com-
plexity, total cognitive complexity, and three Halstead metrics
(volume, difficulty, effort). These metrics provide baseline
indicators of code size and structural complexity. For exam-
ple, high cyclomatic complexity often indicates deeply nested
control flow that may contain edge case bugs.

LLM Semantic Features: Static metrics cannot distinguish
between algorithmically safe and unsafe code. A program
with low cyclomatic complexity may still implement O(n?)
logic where constraints require O(nlogn), or use int datatype
where long is needed to avoid overflow. To address this, we
prompt an LLM to analyze each program against its prob-
lem specification as a human would do, and assign risk scores
(0-10) across eight vulnerability categories shown in Table Ta-
ble 2.

Table 2: LLM semantic vulnerability features (scored 0-10)

Category Detection Focus

Array bounds risk Unchecked array accesses, missing
bounds validation
int where long needed (e.g., summing

n=10° values)

Integer overflow

Null pointer risk Dereferencing without null checks,
uninitialized variables
Edge case handling  Handling of n = 0, n = 1, empty input,

maximum constraint values

For a 0-indexed array of size n, access-
ing the n+1th element

Validation against problem constraints

Algorithm correctness (e.g., greedy
where DP is needed)

Algorithmic complexity vs constraints
(e.g., O(n?) with n = 10°)

Oft-by-one error

Input validation
Logic error risk

Timeout risk

Our LLM prompt includes the problem statement and the
agent code, along with a detailed scoring rubric for each cat-
egory. For example, the integer overflow rubric specifies: 0
points for correct use of long, 3 points for potential overflow
in edge cases, 7 points for int used in intermediate calcula-
tions that can overflow given constraints, and 10 points for
definite overflow like int *int multiplication without casting.
This prompting approach with guided rubric reduces LLM
hallucination and ensures consistent scoring across problems.

These semantic features complement static metrics by
reasoning about problem-specific risks. For instance, two
programs with identical cyclomatic complexity may receive
vastly different timeout risk scores if one uses exponential
recursion while the other uses iteration.



3.4.2 Vulnerability Predictor Model
We train a Random Forest [6] classifier to predict the probabil-
ity of vulnerabilities from the 14 extracted features. Among
different classification approaches such as logistic regression,
SVM, and neural network, our experiments show that Random
Forest serves best in terms of performance and simplicity.
We used 100 decision trees with a maximum depth of 10
and balanced class weights to handle the imbalanced distribu-
tion of buggy versus clean code in our dataset. The model is
trained on a 50-50 stratified split of our CSES dataset with 10-
fold stratified cross-validation to ensure robust performance
estimates. For each program i, the model outputs vulnerability
probability p; € [0, 1] representing the estimated likelihood
of containing vulnerable bugs.

3.4.3 Adaptive Time Allocation

Given the vulnerability probabilities for all programs, we
allocate fuzzing time to maximize discovering bugs under
resource constraints. This allocation involves filtering and
proportional distribution.

Threshold-Based Filtering: Programs with vulnerability
probability below threshold 0 are excluded from fuzzing. Let
S ={i: pi > 8} denote the set of included programs. This fil-
tering strategy aggressively reduces the fuzzing search space
by focusing resources on high-risk targets. By using 6 = 0.3,
we achieve 85.7% precision while retaining 90.2% of true
bugs. We discuss this further in our evaluation.

Proportional Time Allocation: For included programs, we
allocate time proportional to vulnerability probability:

pi . e
t; = { TiesPi Toudger ifi€S (1)
0 otherwise

where Thudger = i the total budget given by a user. This ensures
that the total fuzzing time scales linearly with the number of
included programs while allocating proportionally more time
to higher-risk targets within that set.

Example Calculation: Consider three programs with prob-
abilities p; = 0.8, p» = 0.4, p3 = 0.2 and 0 = 0.3, Thudget =
120s. Program 3 is filtered (p3 < 0), leaving S = {1,2}. As
per our allocation scheme, Program 1 receives #; = 80s, and
program 2 receives t, = 40s for fuzzing.

3.4.4 Early-Stopping Scheduler
Studies on fuzzing have shown that coverage grows rapidly
initially, and then plateaus as the fuzzer exhausts reachable
states [4]. Continuing to fuzz after saturation wastes time,
which should have been better spent on testing other targets.
To address this, our scheduler implements dynamic early stop-
ping based on coverage stagnation detection.

During fuzzing, we parse Jazzer’s real-time output to ex-
tract combined coverage metrics (edge coverage + feature
coverage) at regular intervals. We maintain a timestamp of the

last coverage increase for each target. When current coverage
remains unchanged for a saturation window w, the scheduler
preempts the running fuzz instance and schedules the next
one.

4 Implementation

We implement our system in Python using scikit-learn [24] for
ML model training, Jazzer [9] for coverage-guided fuzzing,
and Deeplnfra [10] for LLM inference. Our code is organized
into modules, including LLM clients, fuzz harness generator,
static analysis extractors, vulnerability predictor, and adaptive
fuzzing orchestrator. Below we describe our implementation
choices.

LLM Infrastructure: We implement a unified LLM client
supporting three back-ends: Ollama [22] for local inference,
vLLM [16] for high-throughput serving, and DeepInfra [10]
for cloud-based API access. We initially attempted local in-
ference with vLLM across 2-4 GPUs (L40S, H200, H100) on
Georgia Tech’s PACE cluster, but transitioned to Deeplnfra
due to GPU availability constraints. For all experiments, we
use Qwen/Qwen3-Coder-480B-A35B-Instruct-Turbo [25] for
its strong code understanding capabilities.

Fuzzing Framework: We use Jazzer [9], a coverage-
guided fuzzer built on libFuzzer [28] with JVM integration.
Our adaptive scheduler parses Jazzer’s output dynamically
using regex to extract coverage metrics and detect saturation.
Crashes are saved with SHA-1 hashed filenames for automatic
de-duplication.

Feature Extraction Pipeline: Static metrics are extracted
using SciTools Understand [27] for LOC, cyclomatic com-
plexity, and Halstead metrics, and a custom javalang-based
analyzer for cognitive complexity. LLM semantic features
are extracted via inference through DeepInfra with structured
prompts.

Hardware and Deployment: Fuzzing experiments run on
a Linux machine with an Intel Core i7-10750H (6-core, up
to 5.0 GHz) and 16GB RAM. We run each Jazzer instance
sequentially due to memory constraints. Despite limited hard-
ware, Jazzer’s enables effective fuzzing. Static analysis and
ML training are performed on the same machine.

5 Evaluation

We evaluate our approach on CSES algorithmic problems to
answer four key questions: (1) How does our hybrid model
compare to static-only approaches in vulnerability discrimi-
nation? (2) What is the end-to-end bug detection performance
and resource savings versus baselines? (3) How does the time
budget allocation affect the number of bugs detected? (4) How
does the fuzz harness generation scale?



5.1 Experimental Setup
5.1.1 Dataset

Our dataset consists of 96 algorithmic problems from the
CSES benchmark [17]. The problems cover a wide range
of topics, including sorting, greedy algorithms, dynamic pro-
gramming, graphs, trees, range queries, and mathematics. We
manually write an optimal solution (to serve as ground truth)
for each problem and verify it against the official test suite.

We generate 12 variants of each problem using our prompt
variant generator. An LLM coding agent then generates so-
lutions for all variants, resulting in a total of 1,152 solutions.
We run these solutions against official test suites and label
each solution as either buggy or clean. For the vulnerability
predictor, we use a 50-50 stratified train-test split. The test set
contains 336 buggy and 240 clean solutions. Bug categories
include timeouts due to algorithmic complexity violations,
integer overflows, off-by-one errors, stack overflows, memory
out-of-bounds accesses, logic errors, and non-deterministic
behavior.

5.1.2 Baselines

We compare against four approaches: (1) ChatUniTest, a state-
of-the-art LLM-based unit test generator, (2) Fixed-time base-
line fuzzing that allocates equal fuzzing time to all fuzz tar-
gets, (3) GreenFuzz, an ML-based approach using only static
features for vulnerability prediction, (4) Our approach. All
baselines run on identical hardware to ensure fair compari-
son. Moreover, the last three approaches used the same fuzz
harnesses generated by our harness generation agent.

5.1.3 Evaluation Metrics

We measure the number of bugs caught, recall (% of actual
bugs detected), accuracy (% of solutions correctly identified
as buggy or clean) and time cost (total minutes for complete
fuzzing campaign).
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Figure 3: Filtering precision vs vulnerability threshold for
GreenFuzz and our approach

5.2 Model Discrimination Quality (RQ1)

Our model significantly improves vulnerability discrimina-
tion over GreenFuzz’s model using only static features. We
achieve a mean cross-validation ROC-AUC of 0.943 and
outperform the baseline (0.827 ROC-AUC). Figure 3 shows
filtering precision across different vulnerability thresholds. At
0 = 0.3, GreenFuzz filters 113 programs (88 clean, 25 buggy)
achieving 77.9% precision, while our approach filters 231
programs (198 clean, 33 buggy) with 85.7% precision.

Figure 4 further visualizes this discrimination capability.
Points far below the diagonal "Equal Filter Rate" line indi-
cate better performance, that is, filtering more clean code and
retaining buggy code for fuzzing. At 6 = 0.3, our approach
filters 82.5% of clean code while filtering only 9.8% of buggy
code, compared to GreenFuzz which filters 36.7% clean and
7.4% buggy. By filtering more than twice as many programs
(231 vs 113) while missing only 8 additional bugs, our model
allows for aggressive resource savings for fuzzing without
significantly affecting bug detection.
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Figure 4: Discrimination capability: clean code filtered vs
buggy code filtered across different thresholds

The improvement can be attributed to the reason that LLM
semantic features capture algorithmic complexity mismatches
that static metrics miss. For example, static analysis cannot
detect O(n?) solutions to O(n)-constrained problems, but our
timeout risk feature identifies such mismatches by comparing
implementation complexity against problem requirements.
Similarly, our overflow risk feature can identify when a pro-
gram performs long summations, and a 1ong data type should
have been used instead of int. Static analysis cannot predict
whether an integer overflow will occur. However, LLMs can
parse the code like a human, understand the constraints of
the problem, and infer whether the input values can cause
an overflow. The hybrid model correctly filters out programs
that appear complex by static metrics but are algorithmically
correct.



Table 3: End-to-end bug detection performance across ap-
proaches. Our approach achieves strong recall with significant
time savings.

Approach Bugs Clean  Fuzz Time Recall Acc.

(336) Filtered (min) (%) (%)
ChatUniTest 163 0 68.6 48.6 63.0
Fixed Fuzz 245 0 336.5 72.9 76.7
GreenFuzz 232 88 2429 69.1 76.9
Ours 226 198 141.3 67.3 78.9

Further, to assess the generalizability of our model beyond
CSES, we evaluated it on a sample of problems from the
LeetCode dataset. Without any additional training, our model
achieved 0.897 ROC-AUC indicating strong transfer learning
capability. However, the model’s prediction ability is currently
limited to algorithmic problems. Extending to general soft-
ware codebases or predicting common CVEs would require
retraining with domain-specific vulnerability datasets.

5.3 End-to-End Bug Detection Performance (RQ2)

Table 3 shows end-to-end fuzzing performance in all ap-
proaches. ChatUniTest detects only 163 bugs out of 336
known bugs (48.6% recall) because unit tests cannot stress-
test algorithmic complexity and have limited ability in catch-
ing timeouts and overflows. Fixed fuzzing achieves the high-
est recall (81.9%) but requires a fuzzing campaign of 336.5
minutes, which is very large considering the algorithmic prob-
lems and simply does not scale in large codebases.

GreenFuzz improves over ChatUniTest in terms of catch-
ing vulnerabilities. It improves over fixed fuzzing in terms
of time for fuzzing campaign by filtering out potentially non-
vulnerable code. But, it allocates equal resources to the cho-
sen problems irrespective of their vulnerability score. For
example, the problems elevator_rides_buggy_timeout
(buggy) and elevator_rides_original (clean) get an
equal amount of fuzzing time (60s). Our hybrid ap-
proach detects 226 bugs in 141.3 minutes, achieving 1.7x
speedup over green fuzzing with comparable effective-
ness. For the same set of problems, our approach allo-
cates elevator_rides_buggy_timeout (buggy) 71 secs
and elevator_rides_original (clean) 27 secs for fuzzing.
The speedup gain can be justified by the usage of an improved
discrimination model and efficient resource allocation.

The results demonstrate that semantic features enable intel-
ligent prioritization, focusing fuzzing resources on high-risk
targets while safely filtering likely-clean code. Overall, our
approach achieves the best time-recall tradeoff.

5.4 Time Budget-Recall Tradeoff (RQ3)

A general observation in fuzzing is that we tend to find more
bugs when fuzzing for longer time on a given harness. The

question we want to answer is: how much recall do we sacri-
fice when choosing a specific time budget? We experimented
with a range of time budgets: 2s, 5s, 15s, 30s, 45s, 60s, 75s,
and 90s (time per problem), collected all true positive bugs,
and showed the relationship in Figure 5. The overall trend is
increasing, and the rate of increasing is larger with smaller to-
tal fuzz time while plateauing after we go beyond 175 minutes.
The mild fluctuations from the last few data points could be
caused by different machines running these experiments. This
experiment demonstrates that after investing a certain amount
of fuzz time, the marginal gain in recall becomes minimal.
This result provides us with valuable empirical guidelines for
setting the fuzz time budget.
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Figure 5: Tradeoff between time budget and bugs caught

5.5 Scalability of Harness Generation Agent (RQ4)

To investigate how well our fuzz harness generation agent
scales, we ran experiments on 288 problems randomly se-
lected from our test set. As Figure 6 shows, the cumulative
time curve (purple) increases at a constant slope, showing that
the agent scales linearly as the workload increases. We also
show a breakdown of time taken per problem, where most
problems spend less than 20 seconds and either succeed at
initial generation or go through the retry and fix loop. Occa-
sionally, the total time spikes, which corresponds to outlier
problems that take longer time than average, primarily due to
complexity. The limited retry mechanism makes sure that the
generation is bounded and does not blow up in exponential
time. Overall, we see a good linear relation in this scalability
curve, with a few outliers but no cascading slowdowns.

6 Related Works

LLM-Guided Fuzzing: Recent work has explored us-
ing LLMs to improve fuzzing efficiency and coverage.
Fuzz4 All [30] introduced the first universal fuzzer that uses
LLMs as input generators. They employ autoprompting to
encode problem descriptions into effective prompts and im-
prove the test coverage. Although powerful, Fuzz4All is lim-
ited to testing compilers and interpreters. OSS-Fuzz-Gen [20]
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Figure 6: Assessing scalability of harness generation

automates fuzz harness generation using multi-agent LLM
systems with feedback loops. However, the generated har-
nesses are generic and often produce false positive crashes
due to incorrect input constraints. FalseCrashReducer [2]
addresses this with constraint-based drivers that reduce the
number of spurious crashes. Our work differs by generating
problem-specific oracles that embed semantic constraints di-
rectly from problem descriptions. As a result, we reduce false
positives and catch vulnerabilities that generic harnesses miss.
GreenFuzz [19] proposes ML-based stopping criteria using
prediction on static features, terminating fuzzing campaigns
6-12 hours earlier. We extend this approach with LLM seman-
tic features that capture algorithmic properties, improving the
filtering precision and better allocation of fuzzing resources..

Agentic Code Auditing: Recent research in Al safety has
triggered a shift from static benchmarks to dynamic agent-
based auditing [12, 14, 15]. RepoAudit [15] employs LLM
agents for static analysis in repository-level code auditing to
detect bugs such as null pointer dereferences and memory
leaks. Tools like Anthropic’s Petri [12] and Microsoft’s Red-
CodeAgent [14] utilize adversarial agent interactions to test
models for unintended behaviors and security jailbreaks. They
focus on invoking harmful outputs or unsafe code execution
through multi-turn conversations. Our framework comple-
ments these efforts by specifically targeting algorithmic vul-
nerabilities through semantic-aware fuzzing and stress-testing.
It fills the gap where traditional static auditing and safety
red-teaming fail to detect timeout, overflow, and complexity-
violation bugs.

7 Future Work

Our evaluation reveals limitations of fuzzing-only approaches,
which we plan to address as a part of our future work. While
our adaptive fuzzing achieves a good recall, even fixed-time
fuzzing with maximum resource allocation (336 minutes)
catches only 245 of 336 bugs. The remaining bugs are ei-
ther functionally incorrect or have subtle vulnerabilities that
fuzzing cannot catch through random input generation alone.
Unit test generators are better at functional correctness valida-

tion but miss performance and resource-based bugs. A hybrid
approach that combines LLM-guided fuzzing for algorithmic
vulnerabilities with LLM-based unit test generation for func-
tional correctness could provide comprehensive coverage.

Our current implementation focuses on Java and algorith-
mic vulnerabilities, including timeouts, crashes, overflows,
and logic errors. Expanding to general software Common
Vulnerabilities and Exposures (CVEs), such as SQL injec-
tion, authentication bypasses, etc., would require developing
CVE-specific oracles. Additionally, it would require training
vulnerability predictors on diverse bug datasets, and adapting
fuzz harness generation to target code with external dependen-
cies. Supporting multiple programming languages, such as
Python and C++, would broaden our system’s scope. It would
require integrating language-specific fuzzing frameworks and
static analyzers.

8 Conclusion

In our work, we introduce a hybrid LLM-guided fuzzing
framework to catch algorithmic vulnerabilities in Al-
generated code at scale. Our system uses prompt variations
to mimic user interactions, an LLM-guided harness gener-
ator that effectively captures problem-specific constraints
and stress-tests inputs, and a vulnerability predictor to en-
able intelligent, adaptive time allocation. Our approach shows
improved vulnerability discrimination, filters 2x more non-
vulnerable targets, and achieves a 1.7x speedup with similar
recall to the baselines.
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