
Catching Vulnerabilities in AI Generated Code at Scale
Kalit Inani Keshav Kabra Ziyi Yang

Georgia Institute of Technology, School of Computer Science

Problem Statement
Developers are integrating AI-generated code (Claude Code, Github Copilot)

into production systems at an unprecedented scale that traditional testing

tools cannot match

Safety-critical applications (like algorithmic trading platforms, flight software)

risk deploying code that is functionally correct but algorithmically flawed,

leading to timeouts, memory exhaustion, and crashes

Current fuzzers rely on uniform resource allocation (Tfixed), blindly treating all
testing targets as equally risky

This approach wastes cycles on safe code while failing to catch deep

algorithmic complexity bugs (e.g., O(n2) logic) in high-risk targets, making
exhaustive testing prohibitively expensive

Background & RelatedWork
LLM-Based Unit Test Generation (ChatUniTest, FSE’24)

Employs LLMs with adaptive context and validation-repair mechanisms

Generated tests often violate functional correctness requirements (invalid)

Our experiments: 21% invalid tests; 0-40% validity on complex problems

Limited applicability in catching timeouts, overflows, and crashes

Formal Verification (Dafny)

Requires domain experts to specify invariants and handle iterative refinement

LLMs struggle with generating correct loop invariants (50-60% success rate)

Static analysis and SMT-based verifiers cannot capture algorithmic

complexity mismatches (e.g., O(n²) when n=10⁶)

Impractical at scale: requires 5-10+ verification attempts per program with

manual intervention when verification fails

LLM-Guided Fuzzing

OSS-Fuzz-Gen: Uses LLMs to auto-generate fuzz harnesses via agent-based

exploration of projects, build scripts, and validation

→ Limitation: Generates generic harnesses; ignores problem-specific

constraints, requires fixed fuzzing time without prioritization

Green Fuzzing (ISSTA): Addresses when to stop fuzzing campaigns to save

resources; uses ML on static features to predict vulnerable functions; stops

when coverage of predicted vulnerable code saturates

→ Limitation: Relies on static features, not semantic reasoning; blind to

algorithmic complexity

Opportunities and Challenges
Resource Constraints: Exhaustive testing with fixed timeouts leads to ineff-

icient resource usage. Requires long fuzzing campaigns for non-critical code.

→ Opportunity: Intelligent prioritization of high-risk code enables scalable,

focused testing.

The Semantic Gap: Static metrics (LOC, Cyclomatic, Halstead) provide limited

vulnerability discrimination and are incomplete.

→ Evidence: They fail to capture algorithmic complexity mismatches (e.g.,

O(n2) logic vs. O(n) constraints).
The Oracle Challenge: Current agents often generate generic harnesses and

do not capture the oracle constraints, leading to explosion in search space.

Prompt Sensitivity: Semantically equivalent prompts yield different code

behaviors.

→ Opportunity: System must account for prompt variation to ensure robust

verification.

Proposed Solution

CSES 
Problems

Prompt 
Variation 

Generator

Problem Variations

Coding 
Agent

Problem Solutions

 LLM-based Fuzz 
Test Generator

Problem 
requirements 
+ constraints

Fuzz-Validator Fuzz Harness

Fuzz Harness Generation Agent

Vulnerability 
Predictor

Target Problems

Error Feedback 

Static 
Analysis

LLM 
Code 

Analysis

Extracted 
metrics

{P1: T1, P2: T2, P3: T3}
Efficient fuzz time allocation 

according to program’s 
vulnerability probability

Simulates real-world user 
interaction

Final Results

Stage 1

Stage 2

Stage 3

Fuzz Time 
Scheduler

Fuzzer

> Θ (threshold)

Figure 1. Overview of our proposed architecture

Stage 1: Prompt Variation Generation

Generate variations per CSES problem (e.g., overflow emphasis, reordered pre-

sentation, examples-only, specific template requirement) to simulate diverse user

interactions with coding agents.

Stage 2: LLM-Based Fuzz Harness Generation

LLM agent extracts input constraints and generates exhaustive fuzz harnesses

Generate user-defined oracles: timeout, crash, determinism, overflow detection

Validator iteratively refines harnesses with compilation error feedback

Stage 3: Vulnerability Prediction & Adaptive Allocation

3.1 Vulnerability Prediction: In addition to static analysis metrics, an LLM agent

acts as a complexity judge. Its fed in the problem constraints and code under

test (CUT). The agent analyzes and extracts semantic scores similar to how a

human would comprehend code. A trained classifier uses these features to predict

vulnerability probability pi ∈ [0, 1]; achieves 0.943 ROC-AUC.
Static analysis: LOC, cyclomatic and cognitive complexity, Halstead metrics

LLM-based features: Risks of timeouts, logic errors, integer overflows, array

out of bounds, null pointer access and handling edge cases.

3.2 Adaptive Allocation: Filter-out CUTs with pi < θ (where θ is the vulnerability
threshold); The scheduler allocates user-defined time budget (Tbudget) proportion-
ally among the remaining CUTs:

ti = pi∑
j∈S pj

· Tbudget, where S = {j : pj ≥ θ}

3.3 Early-Stopping Scheduling: The scheduler dynamically monitors coverage of

running fuzzer. If coverage becomes stagnant within a pre-defined time window,

the fuzz test is preempted and the next test is scheduled.

Implementation details:

• Dataset: 96 CSES algorithmic problems (sorting, searching, dynamic program-

ming, graph algorithms, mathematics) with official test suites.

• Eval: Human-written time/space-optimal reference solutions for evaluation

• Coding Agent: Qwen/Qwen3-Coder-480B-A35B-Instruct-Turbo

• Java Fuzzer: Jazzer • MLModel: Random Forest Classifier

Evaluation Results

Model Discrimination Quality

Our hybrid model better identifies vulnerable code, enabling more aggressive

filtering with higher precision:

GreenFuzz (static-only): Filters 113 (88 clean, 25 buggy) → 77.9% precision

Ours: Filters 231 (198 clean, 33 buggy) → 85.7% precision

Filters 2× more code while missing only 8 additional bugs

Better discrimination → more fuzzing resources allocated to high-risk targets

0 20 40 60 80 100
Non-vulnerable code filtered (%)

0

20

40

60

80

100

Vu
ln

er
ab

le
 c

od
e 

fil
te

re
d 

(%
)

GreenFuzz
=0.3 Ours

=0.3

GreenFuzz
Ours
Equal Filter Rate

0.0

0.2

0.4

0.6

0.8

1.0

Vu
ln

er
ab

ili
ty

 T
hr

es
ho

ld

Figure 2. Comparison of our vulnerability predictor vs GreenFuzz baseline

End-to-End Bug Detection Performance

Approach Bugs Found (out of 336) Time (mins) Recall Accuracy

ChatUniTest 163 68.6 48.6% 63.0%

Fuzzing (Fixed) 245 336.5 72.92% 82.12%

GreenFuzz 212 242.9 63.1% 76.74%

Ours 228 174.9 67.86% 80.38%

Ours + Early Stopping 216 141.3 64.29% 78.30%

Key Findings:

ChatUniTest cannot catch timeout and overflow bugs—unit tests fail to

stress-test algorithmic complexity mismatches

Fixed fuzzing is thorough but exhaustive without intelligent prioritization

Adaptive resource allocation enables substantial time savings while

maintaining comparable bug detection

Our hybrid approach detects similar bugs (~65% recall) as fuzzing baselines

with significantly less time (1.3x - 1.7x faster)

FutureWork
We plan to extend the framework scope from algorithmic vulnerabilities to

more generic software engineering CVEs (e.g. SQL injection and auth issues)

Fuzz-testing is not effective in verifying functional correctness of programs.

We intend to draw ideas from unit-test generation and explore how they can

be complemented with LLM-guided fuzz-testing

Systems for AI 2025, Atlanta, GA


