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Problem Statement

= Developers are integrating Al-generated code (Claude Code, Github Copilot)
into production systems at an unprecedented scale that traditional testing
tools cannot match

= Safety-critical applications (like algorithmic trading platforms, flight software)
risk deploying code that is functionally correct but algorithmically flawed,
leading to timeouts, memory exhaustion, and crashes

= Current fuzzers rely on uniform resource allocation (7%,.q4), blindly treating all
testing targets as equally risky

= This approach wastes cycles on safe code while failing to catch deep
algorithmic complexity bugs (e.g., O(n?) logic) in high-risk targets, making
exhaustive testing prohibitively expensive

Background & Related Work

= LLM-Based Unit Test Generation (ChatUniTest, FSE'24)

= Employs LLMs with adaptive context and validation-repair mechanisms

= Generated tests often violate functional correctness requirements (invalid)
= Qur experiments: 21% invalid tests; O-40% validity on complex problems

= Limited applicability in catching timeouts, overflows, and crashes

= Formal Verification (Dafny)

= Requires domain experts to specify invariants and handle iterative refinement

= LLMs struggle with generating correct loop invariants (50-60% success rate)

= Static analysis and SMT-based verifiers cannot capture algorithmic
complexity mismatches (e.g., O(n?) when n=10°)

= I[mpractical at scale: requires 5-10+ verification attempts per program with
manual intervention when verification fails

= LLM-Guided Fuzzing

= OSS-Fuzz-Gen: Uses LLMs to auto-generate fuzz harnesses via agent-based
exploration of projects, build scripts, and validation
— Limitation: Generates generic harnesses; ignores problem-specific
constraints, requires fixed fuzzing time without prioritization
= Green Fuzzing (ISSTA): Addresses when to stop fuzzing campaigns to save
resources; uses ML on static features to predict vulnerable functions; stops
when coverage of predicted vulnerable code saturates
— Limitation: Relies on static features, not semantic reasoning; blind to
algorithmic complexity

Opportunities and Challenges

= Resource Constraints: Exhaustive testing with fixed timeouts leads to ineff-
iIcient resource usage. Requires long fuzzing campaigns for non-critical code.

— Opportunity: Intelligent prioritization of high-risk code enables scalable,
focused testing.

= The Semantic Gap: Static metrics (LOC, Cyclomatic, Halstead) provide limited
vulnerability discrimination and are incomplete.

— Evidence: They fail to capture algorithmic complexity mismatches (e.g.,
O(n?) logic vs. O(n) constraints).
= The Oracle Challenge: Current agents often generate generic harnesses and
do not capture the oracle constraints, leading to explosion in search space.

= Prompt Sensitivity: Semantically equivalent prompts yield different code
behaviors.

— Opportunity: System must account for prompt variation to ensure robust
verification.

Proposed Solution
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Figure 1. Overview of our proposed architecture

Stage 1: Prompt Variation Generation

Generate variations per CSES problem (e.g., overflow emphasis, reordered pre-
sentation, examples-only, specific template requirement) to simulate diverse user
iInteractions with coding agents.

Stage 2: LLM-Based Fuzz Harness Generation

= LLM agent extracts input constraints and generates exhaustive fuzz harnesses
= Generate user-defined oracles: timeout, crash, determinism, overflow detection
= Validator iteratively refines harnesses with compilation error feedback

Stage 3: Vulnerability Prediction & Adaptive Allocation

3.1 Vulnerability Prediction: In addition to static analysis metrics, an LLM agent
acts as a complexity judge. Its fed in the problem constraints and code under
test (CUT). The agent analyzes and extracts semantic scores similar to how a

human would comprehend code. A trained classifier uses these features to predict
vulnerability probability p; € |0, 1]; achieves 0.943 ROC-AUC.

= Static analysis: LOC, cyclomatic and cognitive complexity, Halstead metrics

= LLM-based features: Risks of timeouts, logic errors, integer overflows, array
out of bounds, null pointer access and handling edge cases.

3.2 Adaptive Allocation: Filter-out CUTs with p; < 8 (where 6 is the vulnerability
threshold); The scheduler allocates user-defined time budget (T gget) Proportion-
ally among the remaining CUTs:

t; = b - Thudget, Where S ={7 :p; > 0}
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3.3 Early-Stopping Scheduling: The scheduler dynamically monitors coverage of
running fuzzer. If coverage becomes stagnant within a pre-defined time window,
the fuzz test is preempted and the next test is scheduled.

Implementation details:
e Dataset: 96 CSES algorithmic problems (sorting, searching, dynamic program-
ming, graph algorithms, mathematics) with official test suites.

e Fval: Human-written time/space-optimal reference solutions for evaluation

e Coding Agent: Qwen/Qwen3-Coder-480B-A35B-Instruct-Turbo
e Java Fuzzer: Jazzer @ ML Model: Random Forest Classifier

Evaluation Results

Model Discrimination Quality

Our hybrid model better identifies vulnerable code, enabling more aggressive
filtering with higher precision:
= GreenFuzz (static-only): Filters 113 (88 clean, 25 buggy) — 77.9% precision

= Qurs: Filters 231 (198 clean, 33 buggy) — 85.7% precision
= Filters 2x more code while missing only 8 additional bugs
= Better discrimination — more fuzzing resources allocated to high-risk targets
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Figure 2. Comparison of our vulnerability predictor vs GreenFuzz baseline

End-to-End Bug Detection Performance

Approach Bugs Found (out of 336) Time (mins) Recall Accuracy
ChatUniTest 163 68.6 48.6%  63.0%
Fuzzing (Fixed) 245 336.5 72.92% 82.12%
GreenkFuzz 212 2429 63.1% /76.74%
Ours 228 1749  67.86% 80.38%
Ours + Early Stopping 216 141.3 64.29% 7/78.30%
Key Findings:

= ChatUniTest cannot catch timeout and overflow bugs—unit tests fail to
stress-test algorithmic complexity mismatches

= Fixed fuzzing is thorough but exhaustive without intelligent prioritization

= Adaptive resource allocation enables substantial time savings while
maintaining comparable bug detection

= Our hybrid approach detects similar bugs (~65% recall) as fuzzing baselines
with significantly less time (1.3x - 1.7x faster)

Future Work

= We plan to extend the framework scope from algorithmic vulnerabilities to
more generic software engineering CVEs (e.g. SQL injection and auth issues)

= Fuzz-testing is not effective in verifying functional correctness of programs.
We intend to draw ideas from unit-test generation and explore how they can
be complemented with LLM-guided fuzz-testing




